
Detecting Technical Debt Through Issue Trackers

Ke Dai
MASc Student

Supervised by 
Philippe Kruchten
PhD, P.Eng, Professor

Department of Electrical and Computer Engineering
The University of British Columbia

1



What is Technical Debt?

“Shipping first time code is like going into debt. A little debt speeds development so long as it is paid back
promptly with a rewrite... The danger occurs when the debt is not repaid. Every minute spent on not-quite-
right code counts as interest on that debt. Entire engineering organizations can be brought to a stand-still
under the debt load of an unconsolidated implementation, object-oriented or otherwise.”

— Ward Cunningham, 1992
“A design or construction approach that's expedient in the short term but that creates a technical context in
which the same work will cost more to do later than it would cost to do now (including increased cost over
time).”

— Steve McConnell, 2013
“The term technical debt refers to delayed tasks and immature artifacts that constitute a ‘debt’ because
they incur extra costs in the future in the form of increased cost of change during evolution and
maintenance.”

—  Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman, 2016

2



Causes of Technical Debt

3

Te
ch

ni
ca

l D
eb

t
Unintentional Technical 

Debt

Inexperience or 
negligence of 
developers

Short-sightedness of 
software design

Context’s evolution

Technological 
obsolescence

Change of environment

Advent of new 
technologies

Intentional Technical 
Debt

Time constraint

Limited budget



Tradeoffs

4

Short-term 
Benefits

Long-term 
Costs

Increasing the risk 
of project abortion

Reducing the 
productivity of 
development

Increasing the cost 
of maintenance 
and evolution

Capturing the 
market

Saving 
development costs

Delivering the 
product earlier



The Scope of Technical Debt

5

Static Source code 
analysis tools

Immature and 
understudied



My Research

A case study on a commercial software project

Ø Data Source
• An issue tracking data set
• Commercial software project
• Recorded in Chinese
• 8,194 samples

Ø Contributions
• A new approach to identifying technical debt
• Investigating how software developers communicate technical debt
• Automate the identification of technical debt

6



Approach Overview

7

Issue 
Tracking 
Database

Export Issue 
Data

Analyze and 
Tag Issues 
Manually

Extract Key 
Phrases

Extract 
Features

Naïve Bayes 
Classification



Phase 0: Exporting issue data

8



Phase 1: Tagging issues manually

Label Subtype Description

Not Technical Debt

Requirement Change The request for requirement change from the client

New Features Tasks to add new functions or introduce new features

Insufficient Decription The description is insufficient to make a decision

Critical Defects Critical functions or features are not implemented correctly

Technical Debt

Defect Debt Temporarily tolerable defects that will be fixed in the future

Requirement Debt Requirements are not implemented accurately or 
implemented partially

Design Debt The violation of good object-oriented design principles such 
as god class and long method

Code Debt Bad coding practices such as dead code or no proper 
comments

UI Debt UI related issues such as inconsistent UI style or ugly UI 
elements

Architecture Debt Design limitation in architecture level such as the violation of 
modularity

9



Defects or Technical Debt?

Ø Technical Debt
• Tolerable defects
• Marginal negative impact
• Not fixed immediately

Ø Not Technical Debt
• Critical defects
• Fatal errors
• Must be fixed immediately

10



Validation of Manual Tagging

11

Classify the 
issues 

independently

Exchange our 
opinions on 

tagging rules
Refine our 

tagging rules

Have 
discussions 

with 
developers



Phase 2: Extracting key phrases

ØTool: Jieba (https://github.com/fxsjy/jieba/)

12

Final Key Phrases

Remove key phrases referring to domain knowledge 

Union of Two Sets of Key Phrases

Take the union of two sets of key phrases

Key Phrase Extraction

TF-IDF TextRank

Word Sequence

RES, 功能键，拥有，重置，和，重新，启动，两种，功能

Text

RES功能键拥有重置和重新启动两种功能



Final Key Phrases

114 in total, 104 in Chinese, 10 in English:

'⽬前', '当前', '现在', '现有', '前期', '过去', '将来', '时间', '实际', '现实', '⽤户', '客户', '增强', '修改', '修复', '更改', '整
改', '改进', '改善', '改动', '改成', '改为', '取代', '替换', '变更', '删除', '取消', '建议', '优化', '简化', '完善', '提⾼', '重构', '
解耦', '重新', '定义', '移植', '整合', '合并', '调整', '扩展', '期待', '计划', '管理', '维护', '功能', '需求', '设计', '规则', '理论
', '策略', '机制', '算法', '数据结构', '逻辑', '代码', '结构', '架构', '构架', '风格', '样式', '格式', '性能', '效率', '充分', '安全
性', '兼容性', '可扩展性', '可维护性', '稳定性', '通⽤性', '可⽤性', '可读性', '易读性', '实时性', '局限性', '更友好', '更
专业', '更准确', '问题', '配置', '优先级', '不⼀致', '不合理', '不⽅便', '⽅便', '不清晰', '不准确', '不直观', '不美观', '不
协调', '不流畅', '不符合', '不全', '异常', '缺陷', '限制', '影响', '体验', '习惯', '操作', '困难', '延迟', '卡顿', 'UI', 'risk',
'risks', 'design', 'code', 'optimise', 'optimize', 'refactor', 'refactoring', 'SonarQube'

13



Key Phrases

Ø Time (Accumulation)
“at present”, “now”, “current”, “previously”, “in the past”, “in the future”, “time”

Ø Modification
“strengthen”, “change”, “modify”, “replace”, “update”, “delete”, “cancel”, “optimize”, “simplify”, “perfect”, 
“improve”, “refactor”, “decouple”, “again”, “re-”, “replant”, “tidy”, “integrate”, “merge”, “adjust”, “extend”

Ø Quality Attributes
“security”, “compatibility”, “scalability”, “maintainability”, “stability”, “generality”, “usability”, “readability”, 
“real-time”

Ø Defects or Design Limitation
“inconsistent”, “unreasonable”, “inconvenient”, “convenient”, “unclear”, “inaccurate”, 'not intuitive', “not 
pretty”, “incongruous”, “not smooth”, “inconformity”, “incomplete”, “abnormity”, “defect”, “limit”, “impact”, 
“experience”, “habit”, “operation”, “difficulty”, “delay”

14



Phase 3: Extracting features

Use bigram and trigram features

Use bigram and trigram features

[“design”, “change”, “keep”, “consistent”, “design”, “different”,
“pages”, “moving”, “clear-all-rules”, “button”, “front”, “deploy”, “rules”,
“table”, “design change”, … , “deploy rules table”]

Key Phrases

“users”, ”change”, “modify”, … , “rules”, “design change”, ”improve 
unit test”

15

Issue Text
“design change: to keep a consistent design with different pages,
we are moving the clear-all-rules button to the front of the deploy
rules table. (Consistent with event page).”

Feature Vector

[false, true, false, … , true, true, false]

Feature Space

[contain(“users”), contain(”change”), contain(“modify”), …,
contain(“rules”), contain(”design change”), contain(“improve unit
test”)]

Word Sequence
[“design”, “change”, “keep”, “consistent”, “design”, “different”,
“pages”, “moving”, “clear-all-rules”, “button”, “front”, “deploy”,
“rules”, “table”]



Phase 4: Creating a binary Naïve Bayes Classifier

Ø Naïve Bayes Algorithm
Ø based on an assumption that the features are conditionally independent of each other given the 

category
Ø determines the category of a given sample with n-dimensional features (𝑥1,…,𝑥𝑛) by calculating 

the probability that the sample belongs to each category and then assigning the most probable 
category c to it

Ø Tool: NLTK (http://www.nltk.org)
Ø Repeated random sub-sampling validation

Ø repeatedly splitting the full data set into 80/20% randomly distributed partitions
Ø training and testing the classifier for each split
Ø recording performance results

16



Conclusion

Ø The term technical debt were found in the issue 
data set.

Ø All technical debt instances were expressed 
implicitly.

Ø Text patterns indicating technical debt exist.

17

Category Average 
Precision

Average 
Recall

Average 
F1-score

Technical 
Debt 0.72 0.81 0.76

20 Most Informative Features for Detecting Technical Debt

Features
Likelihood Ratio

(Technical Debt : not Technical 
Debt)

协议识别优化(protocol 
identification optimization) = 1 155.2 : 1.0

增强 (strengthen) = 1 128.2 : 1.0

不方便 (inconvenient) = 1 128.2 : 1.0

提高 (improve) = 1 117.4 : 1.0

优化 (optimize) = 1 90.8 : 1.0

整改 (change or modify) = 1 87.7 : 1.0

风格 (style) = 1 65.2 : 1.0

体验 (experience) = 1 64.4 : 1.0

改进 (improve) = 1 60.7 : 1.0

不容易 (not easy) = 1 47.2 : 1.0

改善 (improve) = 1 44.5 : 1.0

效率 (efficiency) = 1 44.5 : 1.0

简化(simplify) = 1 38.2 : 1.0

解决方案(strategy) = 1 35.8 : 1.0

困难(difficulty) = 1 33.7 : 1.0

前期(previously) = 1 33.7 : 1.0

不美观(not pretty) = 1 33.7 : 1.0

risk = 1 33.7 : 1.0

算法(algorithm) = 1 31.8 : 1.0

习惯(habit) = 1 31.8 : 1.0



Limitation and Future Work

Ø Limitation
Ø Limited issue data set
Ø One classification algorithm
Ø Simple feature extraction method

Ø Future work
Ø Multi-classifier
Ø Sophisticated feature extraction methods
Ø Other classification algorithms: random forest, deep learning

18



Thank you!
谢谢！

19


