
Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Investigating the Effectiveness of Greedy Algorithm
on Open Source Software Systems for Determining

Refactoring Sequence

Sandhya Tarwani1 Ashish Sureka2

1SRM University, India (sandhya.tarwani@gmail.com)

2Ashoka University, India (ashish.sureka@ashoka.edu.in)

QuASoQ 2017 (co-located to APSEC 2017)

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Background and Context Setting
Research Contributions

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Background and Context Setting
Research Contributions

Code Smells and Refactoring

Code smells are indicators of root problem in the source code [2]

Refactoring is a term used for the restructuring and redesigning of
the existing code without altering its external attributes.

Fowler [2] defined more than 70 types of refactoring techniques like
extract method, extract class etc.

Refactoring helps in transforming the source code that no longer
contains code smell.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Background and Context Setting
Research Contributions

Refactoring Sequence Determination

Several researchers are conducting study on finding the correct or
best sequence for refactoring techniques so that software main-
tainability value gets enhanced [6][7][13].

If the sequence is known in advance to the software developers, then
it will substantially reduce the effort and time spent on bug fixing
and thereby improving quality of the software.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Background and Context Setting
Research Contributions

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Background and Context Setting
Research Contributions

Novel and Unique Contributions

Novel Algorithm

A greedy-approach based algorithm for determining the refactoring
sequence for a software system. Our study is the first work on group-
ing classes based on the number of bad smells and then applying
the greedy algoritm.

Empirical Validation

An empirical analysis on four open-source software systems to exhibit
the effect of the proposed approach. Our study is the first work on
JTDS, JChess, OrDrumbox and ArtOfIllusion dataset

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Literature Survey - 1

A. Ghannem et al. [3]

A. Ghannem et al. [3] proposed an approach for automating the
refactoring process in the source code with the help of Iterative
Genetic Algorithm.

Y. Khrishe and M. Alshayeb [5]

Y. Khrishe and M. Alshayeb [5] conducted an empirical study to find
out whether order of applying refactoring affects the quality of the
software or not.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Literature Survey - 2

I. Toyoshima et al. [11]

I. Toyoshima et al. [11] proposed 3 gate refactoring algorithm which
is a new refactoring algorithm that is developed with the help of three
refactoring rules of Workflow net.

A. Shahjahan et al. [8]

A. Shahjahan et al. [8] used graph theory techniques to propose a
new method of code refactoring which is applied on projects written
in Java language.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Literature Survey - 3

G. Szoke et al. [9]

G. Szoke et al. [9] developed a refactoring toolset called FaultBuster
that helps in detecting problems in source code with the help of
source code analysis, running automatic algorithms to remove bad
smells and execute integrated testing tools.

Meananeatra et al. [6]

Meananeatra et al. [6], Eduardo et al. [7] and Wongpiang et al. [13],
Tarwani et al. [10] present techniques on searching for refactoring
sequence for single class of a dataset.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Dataset and N-Ary Trees

We download source-code dataset from sourceforge and bad smells
are identified with the help of plug-ins like JDeodorant [9][12]

Classes are then prioritized on the basis of number of bad smells

Only those classes are considered whose number of bad smells are
greater than or equal to 4

1-ary tree is formed where number of refactoring techniques is less
than or equal to 3 and 2-ary tree is formed otherwise.

After the formation of the trees, greedy algorithm is used to find
out the best sequence for maximizing maintainability.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Proposed Solution Approach - Multi-Step Process

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Sequence of Steps for the Proposed Approach

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Dataset and N-Ary Trees

Greedy Algorithm

Greedy algorithm is an algorithmic paradigm that always makes
choices that look best at that moment [13][14].

It tries to make locally optimal choices at each stage in hope of
finding the globally optimal solution.

We use greedy algorithm is used to find the refactoring sequence for
the datasets used.

At every step, we move forward in the tree formed.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Grouping based on the Number of Bad Smells

We observe that there are classes with number of bad smells more
than 5 which clearly shows the need of refactoring and also identi-
fying a correct order of refactoring.

We perform grouping based on the number of bad smells, select
classes based on the highest LOC value and then apply the refactor-
ing sequence.

Trees are formed after applying refactoring to the original code in
two ways that are discussed below.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Sequence Determination - 8 Classes in JTDS project

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Original Code (OC), Changed Code (CC), Refactoring
Technique

EM (Extract Mehtod) and trees such as 1-ary and 2-ary for a class
in JTDS

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

One-ary Analysis - 1

In one-ary analysis, trees are formed by applying various refactoring
techniques on a same potion of the code.

Changed version should be an improved version of the original source
code

After applying the refactoring techniques, this analysis will give the
top most refactoring technique

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

One-ary Analysis - 2

Four refactoring techniques like Extract Method (EM), Push Up
(PU), Push Down (PD) and Move Method (MM) have been ap-
plied to the initial original code to get four changed versions of the
software.

The CC denotes the changed code and is collaborated along with
the refactoring technique in a node of a tree.

Three refactoring techniques need to be eliminated and is done by
considering the maintainability value of the software after applying
it.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

1-ary and 2-ary Tree Representation

An Illustration of 1-ary and 2-ary Tree Representation for Classes
having Large Number of Bad Smells in JTDS Project

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

8 Classes from jtds- Bad Smells Greater than four

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Two-ary Analysis - 1

The two-ary trees are formed after combining refactoring techniques
on the source code so that percentage of improvement of quality
gets increased.

The original code gets converted to the changed code CC1 by apply-
ing Extract method class. Afterwards push up refactoring technique
is applied to get CC2 and so on.

Different refactoring techniques are applied one after the other on
the same portion of the code to get final changed version CC4.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Two-ary Analysis - 2

At the end, refactoring sequence is found out to be EM → PU →
PD → MM

The original code gets converted to the changed code CC1 by apply-
ing Extract method class. Afterwards push up refactoring technique
is applied to get CC2 and so on.

Another Example: There exist two refactoring sequences EM → PU
and MM → PD.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

Order in which refactoring is applied

Depends on two factors

Presence of a particular bad smell that will help in judging the soft-
ware developer which particular technique should be used in remov-
ing that smell

Priority of the refactoring techniques, RP is calculated with help of
maintainability values and number of classes in which a particular
refactoring technique is applied

Individual refactoring technique X is applied, value of maintainabil-
ity, M is observed. After dividing M value with number of classes
in which X is applied, priority of X technique can be determined.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Four datasets - sourceforge.net

JTDS and JChess

JTDSa - It is an open source jdbc 3.0 type 4 driver for Microsoft
SQL Server. It is currently the fastest production ready JDBC driver
for SQL server. It consists of 64 classes.

JChessb - It is a java based chess game project that requires two
players playing on local computer or via network connection. It
consists of 69 classes.

ahttps://sourceforge.net/projects/jtds/?source=directory
bhttps:

//sourceforge.net/projects/jchesslibraryss/?source=directory

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

https://sourceforge.net/projects/jtds/?source=directory
https://sourceforge.net/projects/jchesslibraryss/?source=directory
https://sourceforge.net/projects/jchesslibraryss/?source=directory

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Four datasets - sourceforge.net

OrDrumbox and ArtOfIllusion

OrDrumboxa - It is an open source audio sequencer and software
drum machine that is used to compose the bass line for completing
the song. It consists of 217 classes.

ArtOfIllusionb - It consists of 739 classes and is a fully featured 3D
modeling, rendering and animation studio. It consists of subdivision
surface based modeling tools, graphical language for designing etc.

ahttps://sourceforge.net/projects/ordrumbox/?source=directory
bhttps://sourceforge.net/projects/aoi/?source=directory

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

https://sourceforge.net/projects/ordrumbox/?source=directory
https://sourceforge.net/projects/aoi/?source=directory

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Table of Contents

1 Research Motivation and Aim
Background and Context Setting
Research Contributions

2 Related Work

3 Solution Approach
N-Ary Trees and Greedy algorithm
One-ary analysis
Two-ary analysis

4 Dataset and Results
Experimental Dataset
Experimental Results

5 Conclusion

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Workedout Example - JTDS Dataset

Dataset jtds consist of 64 classes in which eight classes have been
considered as severe as they contain bad smells greater than 4

The ranks will help in selecting refactoring techniques for the for-
mation of the trees.

Classes are selected on the basis of highest LOC value as higher LOC
value will lead towards more confusion and complexities

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Refactoring Technique, Priority Value and the Rank
Assignment

Refactoring Technique Priority Value Rank

R1 [EM] 458.0313 5

R2 [EC] 429.755 3

R3 [RC] 529.1633 6

R4 [MM] 345.198 1

R5 [RE] 431.7525 4

R6 [TEFB] 385.06 2

R7 [BOTB] 0 -

R8 [SC] 0 -

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Metrics after Applying Refactoring (Type 1 & 2)

Sequence CBO LCOM RFC WMC Ocavg AHF MHF Total

MM, EM 57 2 122 310 4.84 72.32 73.44 641.6

MM, RE 57 2 121 340 5.40 72.32 73.02 670.74

EC, EM 57 5 155 291 4.34 72.73 71.64 656.71

EC, RE 57 5 153 299 4.60 72.73 70.77 662.1

Sequence CBO LCOM RFC WMC Ocavg AHF MHF Total

MM, EM, RC 57 2 117 297 4.64 72.32 73.44 623.4

MM, RE, RC 57 2 116 327 5.19 72.32 73.02 652.53

EC, EM, RC 57 5 150 278 4.15 72.73 71.64 638.52

EC, RE, RC 57 5 148 286 4.40 72.73 70.77 643.9

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Metrics after Applying Refactoring (Type 3 & 4)

Sequence CBO LCOM RFC WMC Ocavg AHF MHF Total

MM, EM 33 9 103 133 2.56 -167.74 -34.62 78.2

MM, RC 33 8 100 124 2.48 -167.74 -40 59.74

RE, EM 33 8 109 151 2.80 -167.74 -37.04 99.02

RE, RC 33 8 106 142 2.73 -167.74 -42.31 81.68

Sequence CBO LCOM RFC WMC Ocavg AHF MHF Total

EC, EM 41 7 29 179 12.79 100 100 468.79

EC, RE 41 7 27 183 15.25 100 100 473.25

TEFB, EM 55 11 46 266 9.76 100 100 587.76

TEFB, RE 55 11 44 270 10.77 100 100 590.77

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Workedout Example - JTDS Dataset

Refactoring techniques are selected on the basis rank assigned to
them

Result shows the change in value of metrics after applying refactoring
techniques so that sum can be calculated for all the metrics that will
help in relating it with the maintainability of the class

If results for tdscore.java are taken into consideration then it can
be seen that it is formed by after the application of R2 and R4
refactoring techniques.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Workedout Example - JTDS Dataset

Afterwards, minimum value is selected among all the rows calcula-
tion by keeping in mind the inverse relation between the software
metrics and maintainability.

Result shows that the combinations of refactoring techniques are
applied but this time only that part of the tree is taken forward that
gets selected in table.

At the end refactoring sequence for tdscore.java is found to be MM
→ EM → RC as this combination has minimum value of sum of
metrics which results in maximum maintainability.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Metrics Value after Applying the Refactoring

Sequence CBO LCOM RFC WMC Ocavg AHF MHF Total

EM, RC 10 128 220 267 1.44 100 100 826.44

RE, RC 10 128 220 275 1.40 100 100 834.4

Object-Oriented Metrics Value after Applying the Refactoring in
the Given Sequence

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Example - Refactoring Sequence Determination Algorithm

Sequence CBO

Tdscore.java (7 smells) MM → EMRC

Jtdsstatement.java (6 smells) MM → RC

Support.java (5 smells) EC → RE

Jtdsdatabasemetadata.java (4 smells) EM → RC

Four Classes from JTDS dataset selected as Illustrative Example to
Demonstrate Refactoring Sequence Determination Algorithm

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Analysis across Datasets

The number of god class and long method type of bad smells are
high in all the datasets which indicates the maximum use of extract
class and extract method refactoring technique

Most common refactoring sequence will EC-EM.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Java Class, Bad Smell Present and Refactoring Sequence

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Result - Values Greater than Defined Value

Feature JTDS JCHESS ORDRUMBOX ARTOFILLUSION

Classes 64 69 217 739

Changes 37 57 86 194

1 RT 8 8 49 248

2 RT 6 2 44 144

3 RT 6 0 25 75

4 RT 3 2 7 39

>5 RT 4 0 6 39

Number of Classes and Changes, Number of Classes for which the
Number of Refactoring is Greater than a Defined Value

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Number of Classes Having a Pre-Defined Bad Smell

Feature JTDS JCHESS ORDRUMBOX ARTOFILLUSION

God Class 16 22 78 313

Long Method 26 22 78 390

Type Checking 5 3 12 111

Feature Envy 8 4 31 141

Empty Catch-Block 15 0 7 51

Dummy Handler 1 10 43 62

Exception - Finally 5 0 1 4

Careless Cleanup 5 1 8 22

Unprotected Main 1 3 3 3

Nested Try 6 1 5 15

Over Logging 0 0 0 0

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Experimental Dataset
Experimental Results

Analysis across Datasets

Consider dataset Artofillusion, 194 classes out of 739 classes will
remain unchanged

Over logging type of bad smell is not present in any dataset and
hence sprout class refactoring technique will never be a part of refac-
toring sequence.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

Summary and Takeaways

We present an approach to determine the refactoring sequence for
a software system having bad smells in several classes.

The proposed approach is based on identifying bad smells for each
class in the object-oriented software system (number of bad smells
and types of smell) and grouping the classes based on the number
of bad smells.

We conduct experiments on four open-source Java projects to
demonstrate the effectiveness of our approach.

We present descriptive statistics of the final results which shows that
the proposed approach meets its desired objectives.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

References I

[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[2] M. Fowler and K. Beck. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[3] A. Ghannem, G. El Boussaidi, and M. Kessentini. Model refactoring using
interactive genetic algorithm. In International Symposium on Search Based
Software Engineering, pages 96–110. Springer, 2013.

[4] A.-R. Han and D.-H. Bae. An efficient method for assessing the impact of
refactoring candidates on maintainability based on matrix computation. In
Software Engineering Conference (APSEC), 2014 21st Asia-Pacific, volume 1,
pages 430–437. IEEE, 2014.

[5] Y. Khrishe and M. Alshayeb. An empirical study on the effect of the order of
applying software refactoring. In Computer Science and Information Technology
(CSIT), 2016 7th International Conference on, pages 1–4. IEEE, 2016.

[6] P. Meananeatra. Identifying refactoring sequences for improving software
maintainability. In Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 406–409. ACM, 2012.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

References II

[7] E. Piveta, J. Araújo, M. Pimenta, A. Moreira, P. Guerreiro, and R. T. Price.
Searching for opportunities of refactoring sequences: reducing the search space.
In Computer Software and Applications, 2008. COMPSAC’08. 32nd Annual IEEE
International, pages 319–326. IEEE, 2008.

[8] A. Shahjahan, W. haider Butt, and A. Z. Ahmad. Impact of refactoring on code
quality by using graph theory: An empirical evaluation. In SAI Intelligent
Systems Conference (IntelliSys), 2015, pages 595–600. IEEE, 2015.

[9] G. Szőke, C. Nagy, L. J. Fülöp, R. Ferenc, and T. Gyimóthy. Faultbuster: An
automatic code smell refactoring toolset. In Source Code Analysis and
Manipulation (SCAM), 2015 IEEE 15th International Working Conference on,
pages 253–258. IEEE, 2015.

[10] S. Tarwani and A. Chug. Sequencing of refactoring techniques by greedy
algorithm for maximizing maintainability. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International Conference on,
pages 1397–1403. IEEE, 2016.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

Research Motivation and Aim
Related Work

Solution Approach
Dataset and Results

Conclusion
References

References III

[11] I. Toyoshima, S. Yamaguchi, and J. Zhang. A refactoring algorithm of workflows
based on petri nets. In Advanced Applied Informatics (IIAI-AAI), 2015 IIAI 4th
International Congress on, pages 79–84. IEEE, 2015.

[12] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. Jdeodorant: Identification and
removal of type-checking bad smells. In Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European Conference on, pages
329–331. IEEE, 2008.

[13] R. Wongpiang and P. Muenchaisri. Selecting sequence of refactoring techniques
usage for code changing using greedy algorithm. In Electronics Information and
Emergency Communication (ICEIEC), 2013 IEEE 4th International Conference
on, pages 160–164. IEEE, 2013.

[14] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm for
aligning dna sequences. Journal of Computational biology, 7(1-2):203–214, 2000.

Sandhya Tarwani, Ashish Sureka Refactoring Sequence Determination

	Research Motivation and Aim
	Background and Context Setting
	Research Contributions

	Related Work
	Solution Approach
	N-Ary Trees and Greedy algorithm
	One-ary analysis
	Two-ary analysis

	Dataset and Results
	Experimental Dataset
	Experimental Results

	Conclusion

