5th International Workshop on Quantitative Approaches to Software Quality (QuASoQ) Nanjing, Dec 4, 2017

Pitfalls and Countermeasures in Software Quality Measurements and Evaluations

Hironori Washizaki washizaki@waseda.jp Prof., Global Software Engineering Laboratory, Waseda University Visiting Prof., National Institute of Informatics Director, SYSTEM INFORMATION CO., LTD. Vice-Chair, IEEE CS Japan Chapter Chair, SEMAT Japan Chapter Convenor, ISO/IEC/JTC1/SC7/WG20 PC Co-Chair, APSEC 2018 Nagoya!

H. Washizaki, Pitfalls and Countermeasures in Software Quality Measurements and Evaluations, Advances in Computers, 106, 2017

Metric and Measurement

Complexity

LOC

Source

<u>code</u>

Effort, time

Impl.

- Mapping attributes to values/names on scales
 - Quality control by single metric

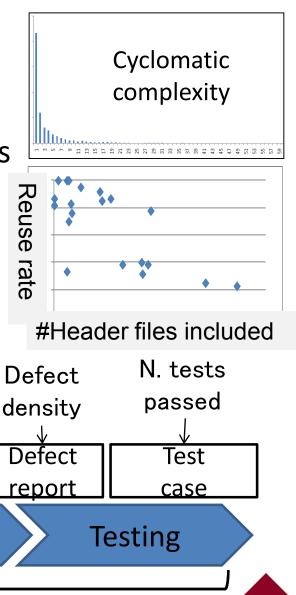
Function

point

Func. Spec.

Req.

Def.


- Estimating metric values by other metrics
- You cannot control what you cannot measure!

Coupling

Module

<u>design</u>

Design

Pitfalls and Countermeasures

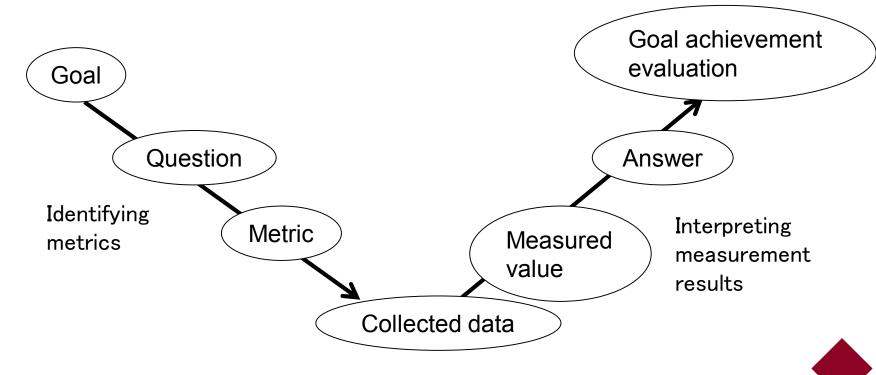
Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
	Prediction incorporating uncertainty					
Uncertain future	Measurement program improvement by					
	machine learning					
Self-certified quality	Standard-based evaluation					
Sen-certineu quality	Pattern-based evaluation					

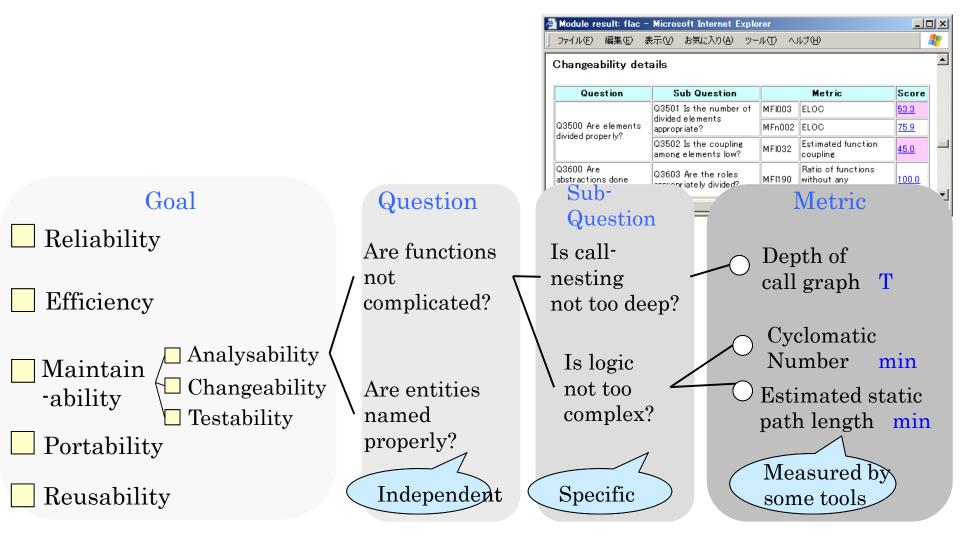
H. Washizaki, Pitfalls and Countermeasures in Software Quality Measurements and Evaluations, Advances in Computers, 106, 2017

Pitfalls and Countermeasures

Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
	Prediction incorporating uncertainty					
Uncertain future	Measurement program improvement by					
	machine learning					
Self-certified quality	Standard-based evaluation					
Sen-certineu quality	Pattern-based evaluation					

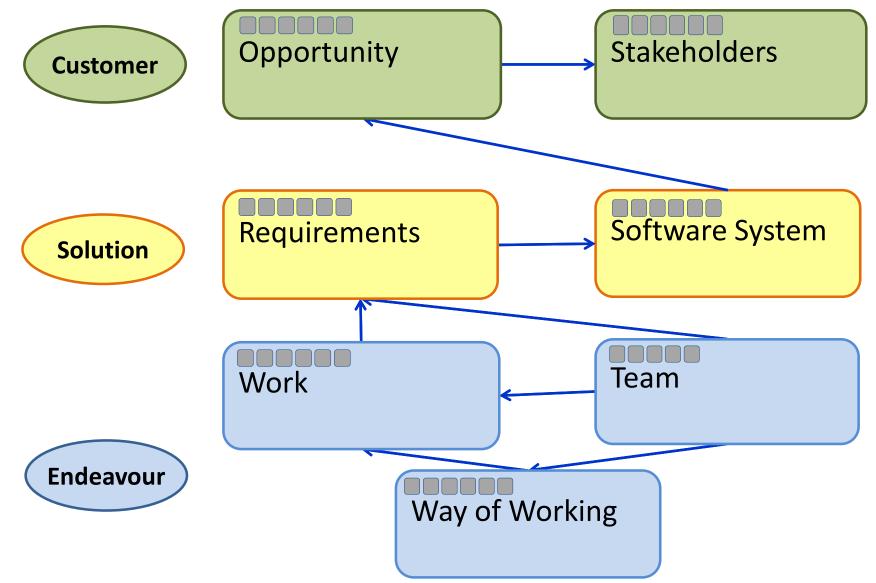
H. Washizaki, Pitfalls and Countermeasures in Software Quality Measurements and Evaluations, Advances in Computers, 106, 2017


Hawthorne Effect

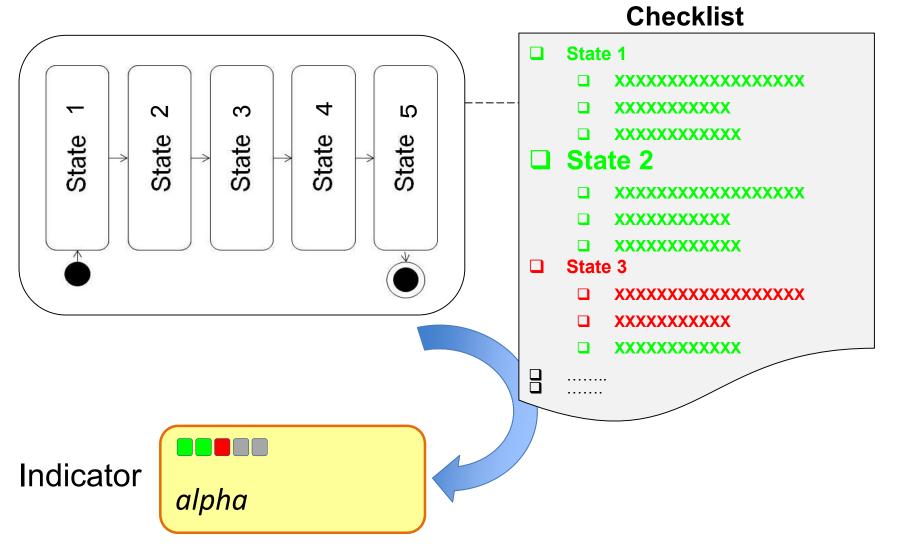

nicolasdsampson.com, Observe And Learn: The Magic Of Paying Attention http://nicolasdsampson.com/wp-content/uploads/2012/10/2010-12-06 observe-learn-magic-paying-attention.jpg

Goal-Question-Metric (GQM) Paradigm

- Goal-oriented framework for identifying goals and necessary corresponding metrics
- Goal: measurement goals
- Question: questions for evaluating goal achievement
- Metric: objective or subjective metrics for obtaining necessary quantitative data to answer questions


GQM-based Multidimensional Measurements

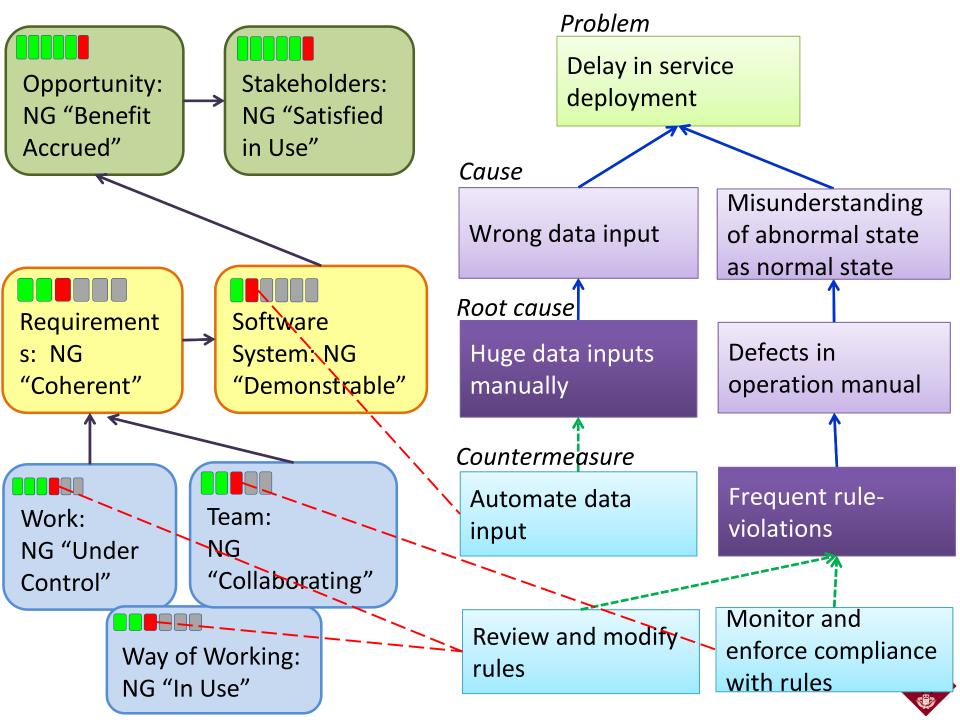
(Scale type: T threshold, min smaller is better, max larger is better)


H. Washizaki, R. Namiki, T. Fukuoka, Y. Harada, H. Watanabe, "A Framework for Measuring and Evaluating Program Source Code Quality", 8th Int'l Conference on Product Focused Software Development and Process Improvement (Profes2007)

SEMAT-based Multidimensional measurements

Ivar Jacobson, Pan-Wei Ng, Paul E. McMahon, Ian Spence, Svante Lidman, "The Essence of Software Engineering: The SEMAT Kernel," Communications of the ACM, vol.55, no.12, pp.42-49, December 2012.

alpha as Project Measurement


Adopted/modified from I. Jacobson, et al.: Tutorial: Essence - Kernel and Language for Software Engineering Practices, ICSE'13

Example from ITA WG on project failuers

- An employee in charge of Bank office inquires "registered customer information cannot be browsed from the terminal".
- It was because a batch processing for the previous day has ended abnormally due to wrong data input.
- It took about two hours to recover the data, and employees at each office had to handle customer inquiry manually.
- For that reason, we had received plenty of complaints from customers who had been waiting for a long time!

H. Washizaki, "Analyzing and refining project failure cases from wider viewpoints by using SEMAT Essence," Essence Conference in Seoul, 2017.

Pitfalls and Countermeasures

Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
	Prediction incorporating uncertainty					
Uncertain future	Measurement program improvement by					
	machine learning					
Self-certified quality	Standard-based evaluation					
Sen-certined quality	Pattern-based evaluation					

Organization misalignment

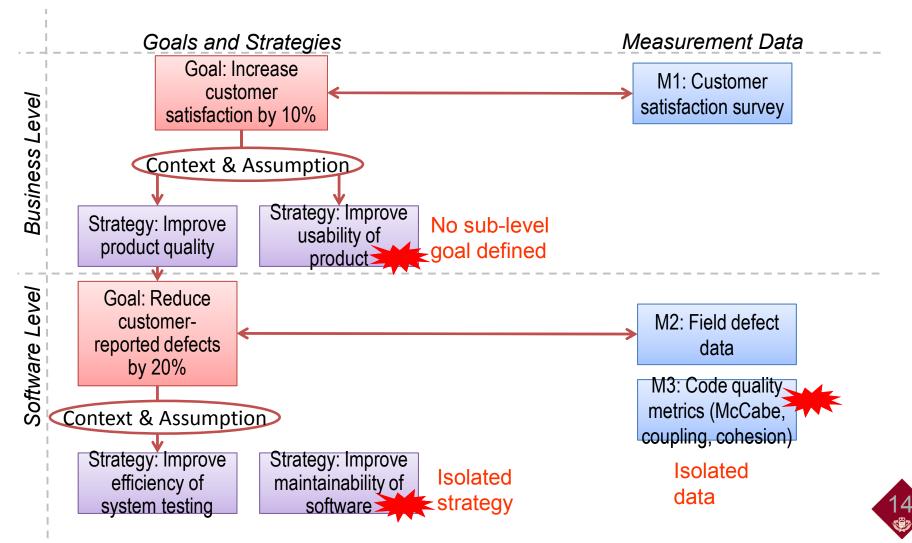
We increase customer satisfaction by quality and usability improvement!

Top management

Development team We reduce customerreported defects by improving testing process and product maintainability.

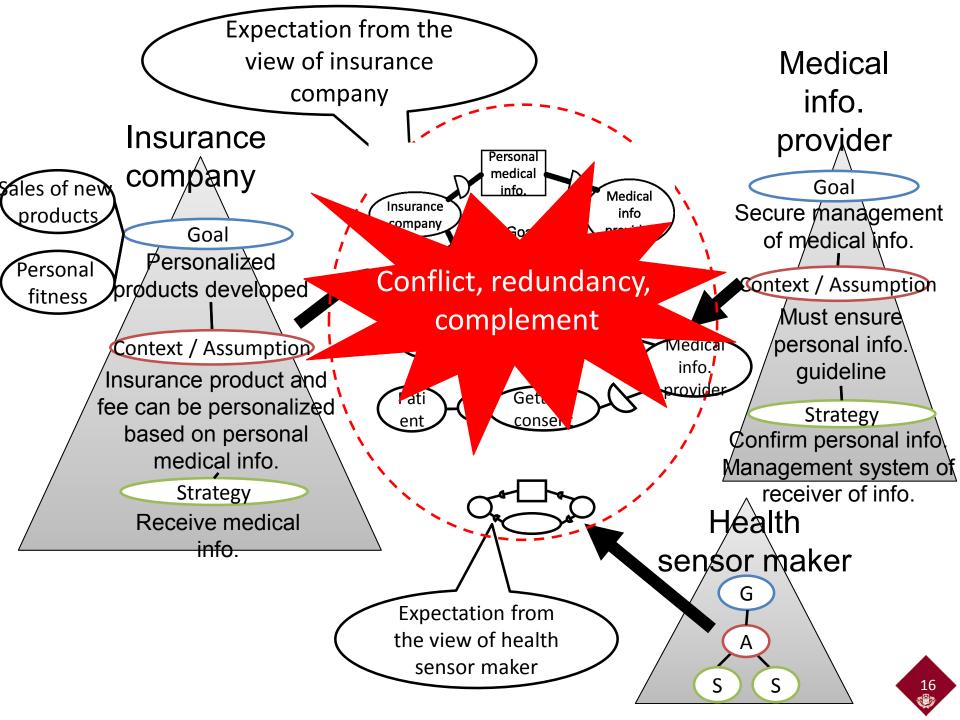
We track defect data and code quality metrics.

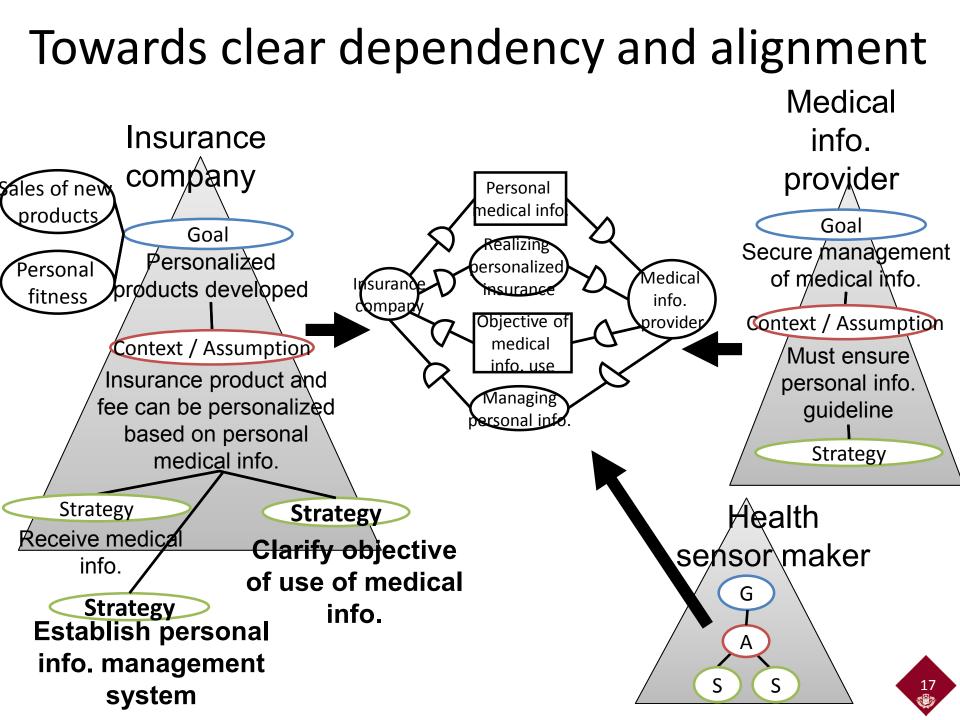
Quality assurance


team

GQM+Strategies

 Alignment and tracing among goal, strategy and data




Context-Assumption-Matrix [IEICE'16]

Takanobu Kobori, Hironori Washizaki, et al., "Exhaustive and efficient identification of rationales using GQM+Strategies with stakeholder relationship analysis," IEICE Transactions on Information and Systems, Vol.E99-D, No.9, pp.2219-2228, 2016.

15 இ

Interpretive Structural Modeling (ISM)

Power.

1*

1*

1

1

0

0

0

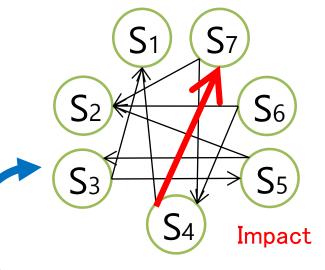
0

1

0

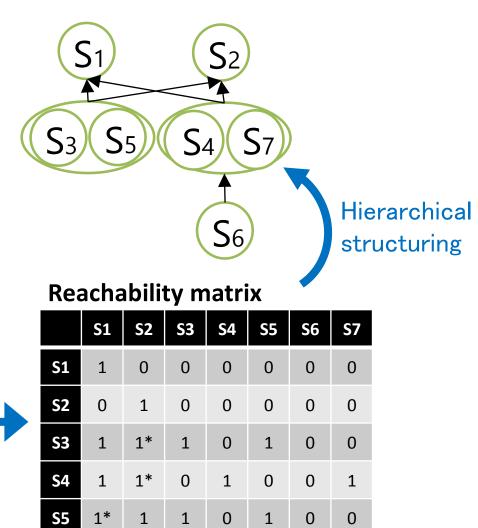
1

1


1*

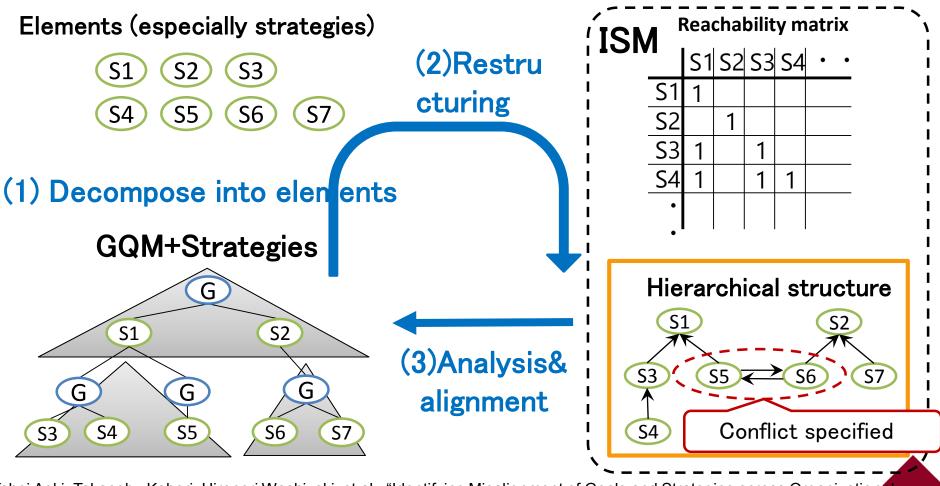
1

8


S6

S7

Relation matrix

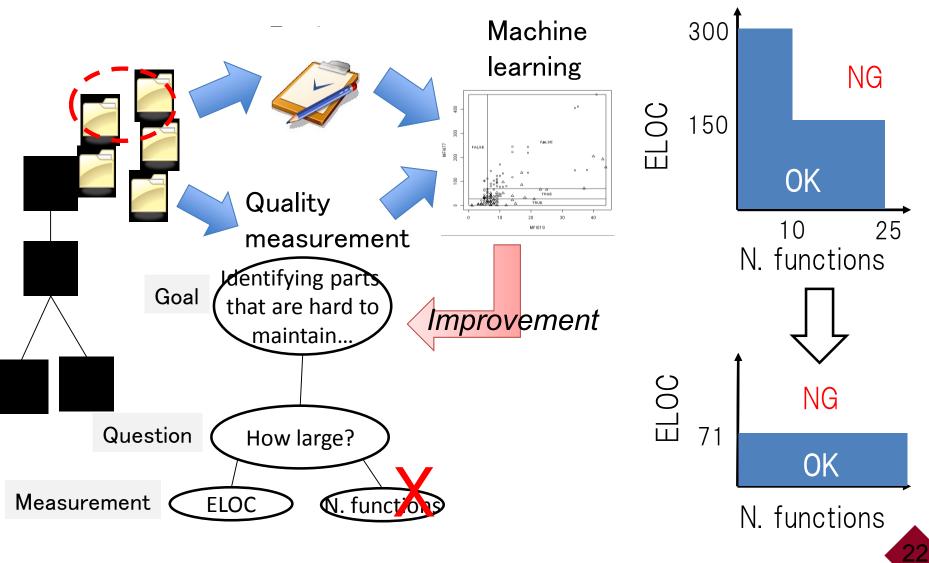

	S1	S2	S3	S4	S5	S6	S7	
S1	1	0	0	0	0	0	9	
S2	1	1	0	0	0	0	0	
S3	1	0	1	0	1	0	0	
S4	1	0	0	1	0	9	1	
S5	0	1	1	0	1	0	0	
S6	0	1	0	1	0	1	0	
S7	0	1	0	1	0	0	1	

ISM-based Alignment [HICSS'16]

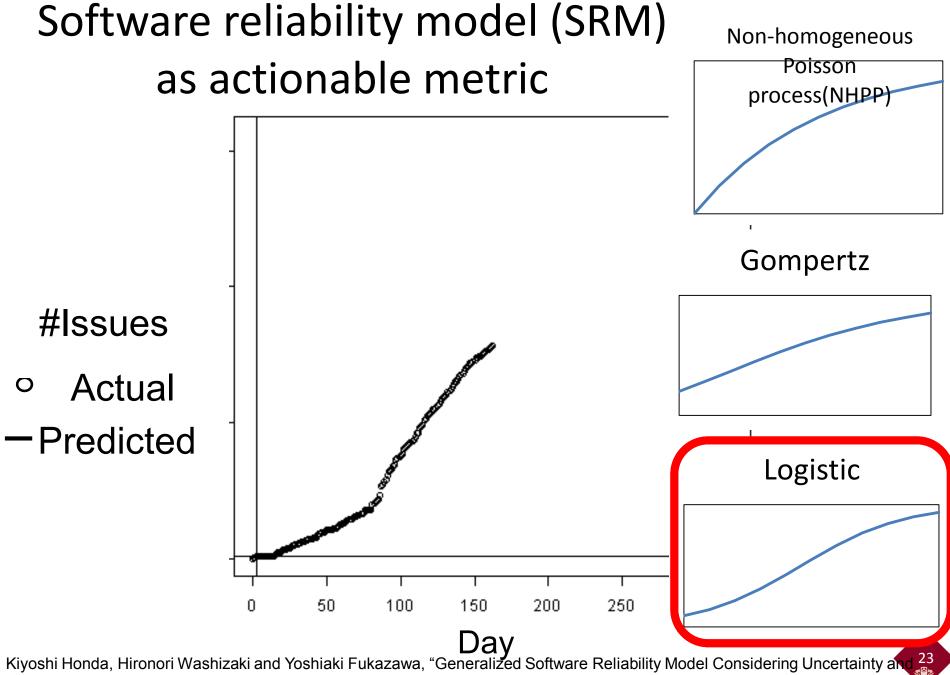
- Alignment for single GQM+Strategies model
- Future: alignment over areas and stakeholders

Yohei Aoki, Takanobu Kobori, Hironori Washizaki, et al., "Identifying Misalignment of Goals and Strategies across Organizational Units by Interpretive Structural Modeling," 49th Hawaii International Conference on System Sciences (HICSS), 2016

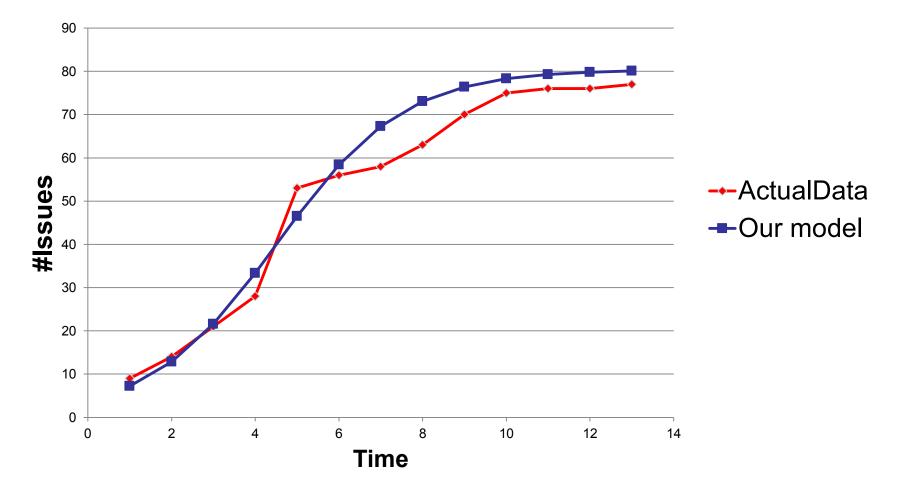
Pitfalls and Countermeasures


Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
	Prediction incorporating uncertainty					
Uncertain future	Measurement program improvement by machine learning					
Colf contified quality	Standard-based evaluation					
Self-certified quality	Pattern-based evaluation					

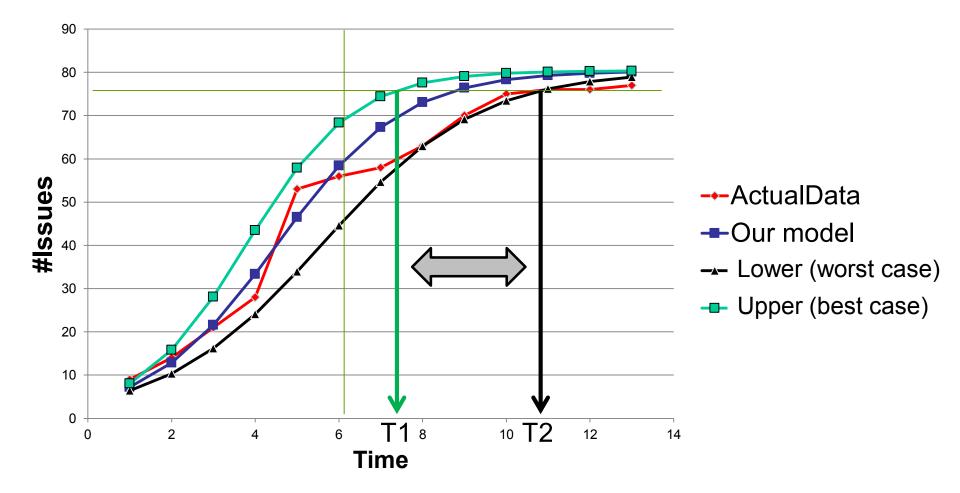
H. Washizaki, Pitfalls and Countermeasures in Software Quality Measurements and Evaluations, Advances in Computers, 106, 2017


Uncertain Future

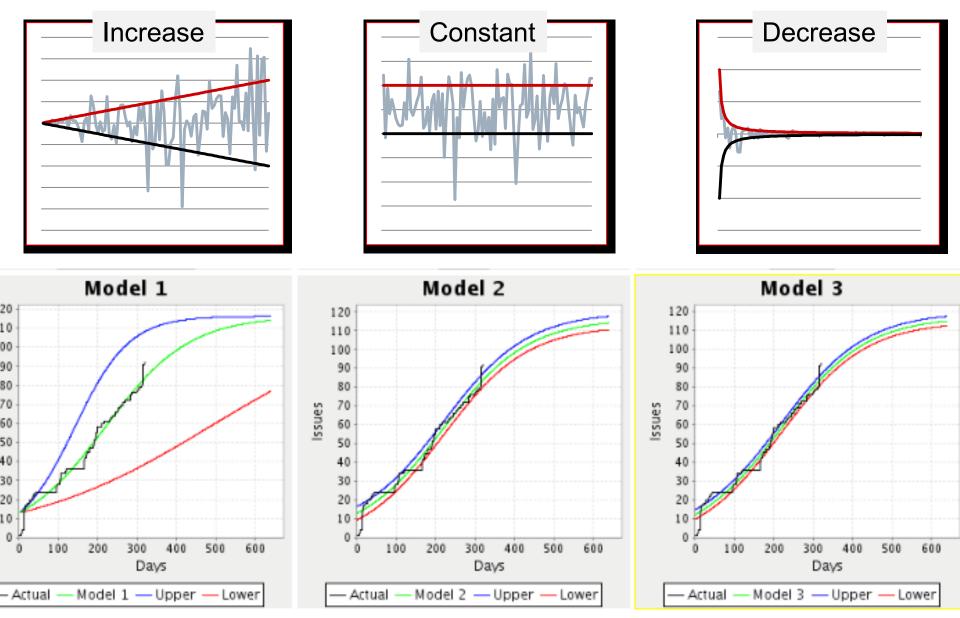
Measurement System Improvement by ML



N. Tsuda, et al. Iterative Process to Improve GQM Models with Metrics Thresholds to Detect High-risk Files, SANER 2015


Dynamics: Model and Applications", International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 2016.

Prediction with uncertainty


Kiyoshi Honda, Hironori Washizaki and Yoshiaki Fukazawa, "Generalized Software Reliability Model Considering Uncertainty and Dynamics: Model and Applications", International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 2016.24

Prediction with uncertainty

Kiyoshi Honda, Hironori Washizaki and Yoshiaki Fukazawa, "Generalized Software Reliability Model Considering Uncertainty and Dynamics: Model and Applications", International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 2016.25

Uncertainty patterns and prediction

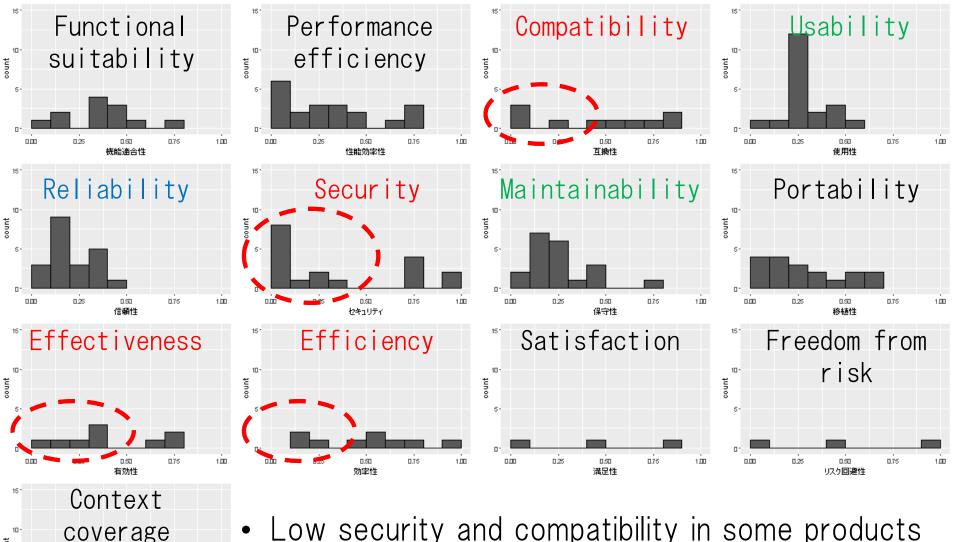
Kiyoshi Honda, Hironori Washizaki and Yoshiaki Fukazawa, "Generalized Software Reliability Model Considering Uncertainty and Pynamics: Model and Applications", International Journal of Software Engineering and Knowledge Engineering (IJSEKE), 2016.

Pitfalls and Countermeasures

Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
Prediction incorporating uncertainty						
Uncertain future	Measurement program improvement by					
	machine learning					
Self-certified quality	Standard-based evaluation					
Sen-certified quality	Pattern-based evaluation					

Self-Certified Quality

Image: How to Spot a Fake: Avoiding Degree Mill Scams https://wenr.wes.org/2015/06/spot-fake-avoiding-degree-mill-scams



ISO/IEC 25000 SQuaRE-based Quality Measurement and Benchmark

		1	E.g. Non-repudiation
	Waseda U. Team	Vendor	G. The events or actions cannot be repudiated later through
1	Concretize SQuaRE measurements by GQM		communication channels (paths). Q1. Any path going through internal servers only?
2	Prepare measurement methods: data forms, static analysis, questionnaire, user- testing		 Q2. Any path going through outside servers? Q3. Any P2P communications? M. Signed communication path ratio = #Signed_paths / #Total_paths
3	Conduct code static analysis, user-testing	Fill data forms, questionnaire	Scores by using percentile E.g., Top 30% = 0.7
4	Measure and evaluate quality		#Products Low Measured value High

H. Nakai, N. Tsuda, K. Honda, H. Washizaki and Y. Fukazawa, Initial Framework for a Software Quality Evaluation based on SO/IEC 25022 and ISO/IEC 25023, IEEE International Conference on Software Quality, Reliability & Security (QRS 2016)

WSQB17 21 Japanese Products Measurement

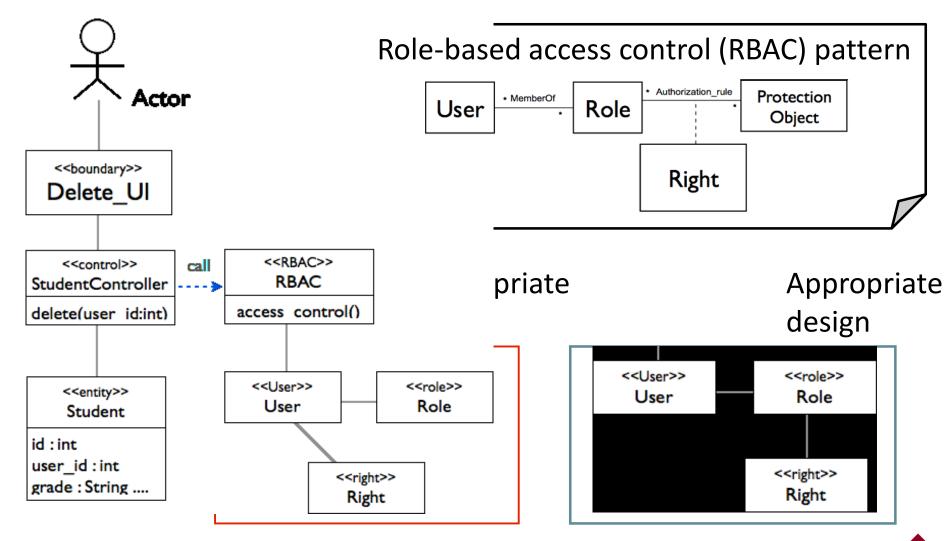
Low security and compatibility in some products
Necessary to address these in IoT era

"H. Nakai, N. Tsuda, K. Honda, H. Washizaki and Y. Fukazawa, Initial Framework for a Software Quality Evaluation based on ISO/IEC 25022 and ISO/IEC 25023, IEEE International Conference on Software Quality, Reliability & Security (QRS 2016)

count

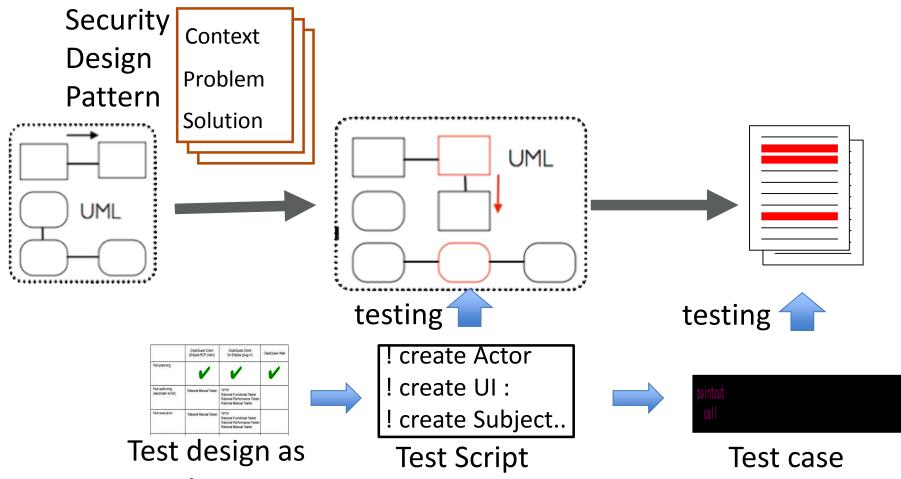
WSQB17 Relationships among characteristics

	Internal/External Quality					Quality in Use						
	Perf.	Comp.	Usa	<u>Relia.</u>	Sec.	Main.	Port.	Effe.	Effic.	Sati.	Free.	Cont.
Func. Perf.	0. 31	0. 19 0. 44	(- <u>0, 72</u>) 0. 24	0. 37 0. 36	-0.05 -0.17		0. 31 0. 32	-0.14 0.32	0. 52 -0. 10	1. 00 -0. 50	1.00 -0.50	1. 00 - <mark>0. 50</mark>
Comp. Usa.			0. 04	0. 17 0. 17	-0.06 -0.21		- <u>0.04</u>	-0.14 -0.09	0. 05 - <mark>0. 20</mark>	-0.50 -1.00	-0.50 -1.00	-0.50 -1.00
Relia. Sec.					0. 30	(<u>0.41</u>) -0.06) (0.45) 0.19	- <u>0.08</u>	0. 11 - 0. 34	1.00 0.50	1.00 0.50	1. 00 0. 50
Main. Port.							0. 26	-0.29 -0.21	0.01	1.00 0.50	1.00 <u>0.50</u>	1. 00 0. 50
Effe. Effic.									0. 03	-1.00 1.00	-1.00 1.00	- <mark>1. 00</mark> 1. 00
Sati. Free.											1.00	1. 00 1. 00


- Negative correlation between usability and functionality.
- Need to adopt user-centered development

H. Nakai, N. Tsuda, K. Honda, H. Washizaki and Y. Fukazawa, Initial Framework for a Software Quality Evaluation based on ISO/IEC 25022 and ISO/IEC 25023, IEEE International Conference on Software Quality, Reliability & Security (QRS 2016)

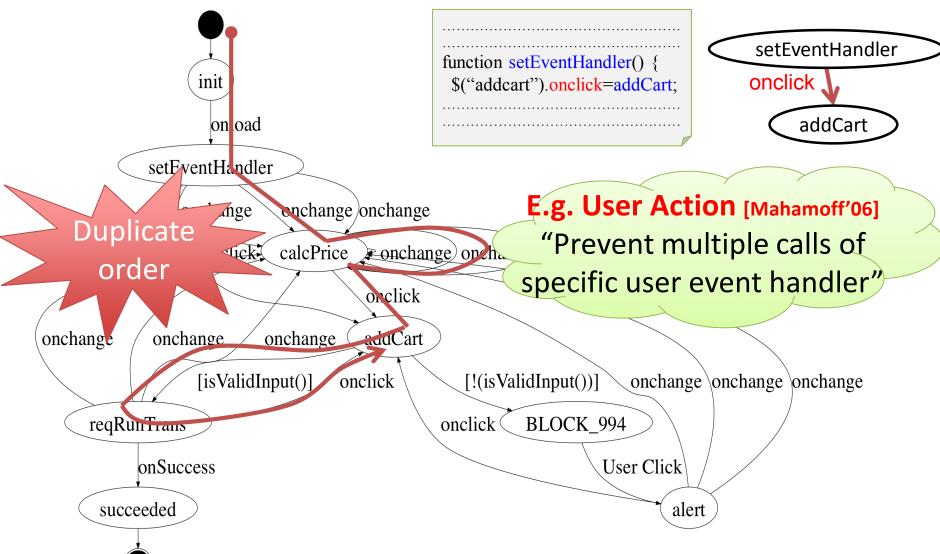
p-value < 0.1


31 இ

Security Patterns and Testing

TESEM: Test Driven Secure Modeling Tool

[ARES'13][ARES'13][IJSSE'14][ICST'15][Information'16]



requirement

[ARES'13] Validating Security Design Pattern Applications Using Model Testing, Int'l Conf. Availability, Reliability and Security [ARES'14] Verification of Implementing Security Design Patterns Using a Test Template, Conf. Availability, Reliability and Security [IJSSE'14] Validating Security Design Pattern Applications by Testing Design Models, Int'l J. Secure Software Engineering 5(4) [ICST'15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST'15 Tools Track [Information'16] Implementation Support of Security Design Patterns Using Test Templates, Information 7(2)

```
window.onload = setEventHandler;
function setEventHandler() {
  $("reg type").onchange = calcPrice;
  $("reg addcart").onclick = addCart;
};
                                       Price: $500
function calcPrice() { ••• };
function addCart() {
                                       Type
  if(isValidInput()) {
                                              -
                                        All days
     reqRunTrans();
                                       Attendee
   else {
                                        Regular +
     alert ("Invalid user inputs");
                                       Payment
                                        Early :
};
                                       Quantity: 1
                                                           Add to Cart
function reqRunTrans() {
  new Ajax.Request("runTrans.php", {
    method: "GET", parameters: getParams(),
    onSuccess: succeeded });
};
function succeeded() { disableAll();
  jumpToConfirm();
};
```

Finite State Machine Extraction

[Mahamoff'06] M. Mahamoff, "Ajax Design Patterns", O'Reilly Media Inc., 2006.

Y. Maezawa, K. Nishiura, H. Washizaki, S. Honiden, Validating Ajax Applications Using a Delay-Based Mutation Technique", 29th IEEE/ACM International Conference on Automated Software Engineering (ASE 2014)

Y. Maezawa, H. Washizaki, Y. Tanabe and S. Honiden, "Automated Verification of Pattern-based Interaction Invariants in Ajax Applications, 28th IEEE/ACM International Conference on Automated Software Engineering (ASE2013)

```
window.onload = setEventHandler;
function setEventHandler() {
  $("reg type").onchange = calcPrice;
  $("reg addcart").onclick = addCart;
};
                                       Price: $500
function calcPrice() { ••• };
function addCart() {
                                       Type
  if(isValidInput()) {
                                             .
                                        All days
     $("addCart").disabled = true;
                                       Attendee
     reqRunTrans();
                                        Regular +
  } else {
                                       Payment
     alert("Invalid user inputs");
                                        Early 0
     $("addCart").disabled = false;
                                       Quantity: 1
                                                           Add to Cart
};
function reqRunTrans() {
  new Ajax.Request("runTrans.php", {
    method: "GET", parameters: getParams(),
    onSuccess: succeeded }); };
function succeeded() { disableAll();
  jumpToConfirm(); };
```

Pitfalls and Countermeasures

Pitfall	Countermeasure					
Negative	Goal-orientation					
Hawthorne effects	Multidimensional measurements					
	Visualization of relationships among					
Organization	organizational goals, strategies, and					
misalignment	measurements					
	Exhaustive identification of rationales					
	Prediction incorporating uncertainty					
Uncertain future	Measurement program improvement by					
	machine learning					
Self-certified quality	Standard-based evaluation					
Sen-certined quality	Pattern-based evaluation					

SamurAl Coding

IPSJ 6th International AI Programing Contest

World Final March 14 2018 Tokyo http://samuraicoding.info

APSEC 2018

25th Asia-Pacific Software Engineering Conference

Nara Dec 4-7 (due: June) PC Chair: H. Washizaki

COMPSAC 2018

42nd IEEE Computer Society Int'l Conf. Computers, Software & Applications

Tokyo July 23-27 (due: Jan 15)

Int. Journal of Agile and Extreme Software Development (IJAESD)

Editor-in-Chief: H. Washizaki

